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ABSTRACT

An analytic semi-empirical approximation to the extinction efficiency, Qez, for

randomly oriented spheroids, based on an extension of the anomalous diffraction formula, is

given and compared with the extended boundary condition or T-matrix method. This will

allow for better and more general modelling of obscurants. Using this formula, Qet can be

evaluated over 104 times faster than with previous methods. This approximation has been

verified for complex refractive indices m = n - ik, where I < n _< oo and 0 _< k < oo and

aspect ratios from 0.2 to 5. We believe that the approximation is uniformly valid over all

size parameters and aspect ratios. It has the correct Rayleigh, refractive index and large

particle asymptotic behaviours. The accuracy and limitations of this formula are extensively

discussed.

Nous pr~sentons une approximation analytique semi-empirique de l'efficacitW

d'extinction Q,,-t, pour des particules sphro'idales orientees aliatoirement, bas•e sur une

extension de la theorie de la diffraction anomalique. Cette approximation eat corn . ee

au calcul bas6 sur la mithode de conditions fronti~res 4tendues ou matrices de tra;- .

Cette approximation permet de mieux mod~liser les obscurants. Grice i cette formule, 4,,t
peut ktre 6valu6 104 fois plus vite que par lea m6thodes antirieures. Nous avons verifi6 cette

formule pour des indices de r4fraction complexes m = n - ik, oh 1 _< n _< oo et 0 < k < oo

et pour des aspects de 0.2 i6 5. Nous croyons que l'approximation eat uniformement valide

pour toutes lea grosseurs et tous les aspects. Elle se comporte correctement i la limite de

Rayleigh, i la limite de l'indice de r~fraction infini et i la limite geom6trique. L'exactitude

de cette formule ainsi que ses limites sont discut~es en d6tall.
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EXECUTIVE SUMMARY

The present and future electro-optic capabilities of fire control systems require full

spectrum obscurants as an effective countermeasure. It is well known that spherical particles
can obscure efficiently only in the visible region of the spectrum. In the near and far infrared

as well as in the microwave region of the spectrum the use of non-spherical particles is

mandatory. Imaging through ocean waters and dusty environments both require knowledge
of the extinction by non-spherical particles. Communications, remote sensing, surveillance
and radar propagation frequently encounter scenarios involving non-spherical particles. The

estimation of electromagnetic extinction through dust or other non-spherical atmospheric
aerosols and hydrosols is an essential first step in the evaluation of the performance of all

electro-optic systems.

To date, the theoretical exploration of the effect of these types of particles on the
performance of obscurants has been either extremely restrictive or prohibitively expensive.
This work partially overcomes these severe restrictions and will aid in the design and perfor-

mance analysis of potential new obscurants. For instance, a factor greater than ten thousand
in computational speed has been achieved with minimal loss in accuracy. Furthermore, the

present approach is much more flexible in the sense that extremely elongated or flattened
particles can now be modelled. Elongated particles are thought to be good millimeter wave

obscurants and flattened or flake-like particles are known to be good infrared obscurants.

The immediate objective of this work is to significantly reduce the computational
burden in calculating the extinction from non-spherical particles. This allows for the explo-
ration of the effects of non-spherical particles.

The longer term goal of this work is to alleviate the remaining constraints in the

theoretical consideration of non-spherical aerosols and obscurants of either natural or ar-

tificial origin. This will aid not only in finding better obscurants but also in the possible
identification and remote classification of such aerosols.
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1.0 INTRODUCTION

The immediate objective of this work is to significantly reduce the computational

burden in calculating the extinction from non-spherical particles. This allows for the ex-

ploration of the effects of non-spherical particles on the performance of obscurants and

electro-optical systems. The longer term goal of this work is to alleviate the remaining con-

straints in the theoretical consideration of non-spherical aerosols and obscurants of either

natural or artificial origin. This will aid not only in finding better obscurants but also in

the possible identification and remote classification of such aerosols.

We have previously presented (Ref. 1) a numerical approximation to Qe• for ran-

domly oriented spheroids. This work was applicable to particles with 1.01 < n < 2 and

0 _< k < 1 for arbitrary sizes and aspect ratios. The required angular integration was

carried out by a 64-point Gaussian quadrature. Since many materials have optical prop-

erties beyond the above limits, we have, in this work, extended the refractive index range

to 1 < n < oo and 0 _< k < oo. Furthermore, large optical sizes produce high frequency

oscillations in the kernel of the angular integral. These integrals are very difficult and

time-consuming to estimate numerically. We have replaced this numerical integral with an

approximate analytic expression that overcomes this difficulty.

The basic approach is to orthogonalize as much as possible the scattering physics

into well-defined regimes. For small physical and optical sizes, the electrostatics (Rayleigh)

approximation is used. For larger and very large optical sizes we still use the electrostatics
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approximation but with the optical constants transformed (Ref. 2) to include the effects of

the magnetic dipole. In the large physical size regime we split the physics into a diffraction

(anomalous diffraction) component and what can be loosely described as edge effects. The

diffraction component is modelled by the anomalous diffraction approximation as developed

by Van de Hulst (Ref. 3). The edge effect (Fock theory) component is modelled by extending

a technique introduced by Jones (Refs. 1 and 4). In this report, this component is further

generalized to have proper behaviour at small optical sizes and for large indices. The gap

between the large and small particle regimes is bridged by a binomial form (Ref. 1) similar

to the generalized mean (Ref. 5, p. 10).

The report is organized as follows: Chapter 2.0 develops the extinction formula.

This includes Sections 2.1, small particle scattering, 2.2 anomalous diffraction, 2.3 the edge

effects and 2.4 the binomial bridging function. Chapter 3 and the Appendix contain

extensive comparisons of this approximation to the T-matrix method (Ref. 6). The final

chapter, Chapter 4., gives the conclusions and remaining limitations.

This work was performed at DREV between October 1990 and March 1992 under

PSC 32A, EO/IR Protection of Land Vehicles.

2.0 DEVELOPMENT OF THE EXTINCTION FORMULA

The physics and the structure of the extinction formula for randomly oriented

spheroids will be developed in this chapter.
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2.1 Small Particle Term

For a physically and optically small particle, all applied electric field gradients

disappear and the particle begins to respond to a homogeneous field. The electrostatics

approximation then holds, giving rise to the Rayleigh scattering formula for randomly ori-

ented spheroids (Ref. 7). If the particle is still geometrically small but optically large, the

magnetic dipole field becomes significant. We have found (Ref. 2) that one can use the

electrostatics approximation but with the optical constants transformed. This transform

correctly describes the full field. It is exact for spheres and approximate for randomly ori-

ented spheroids. The following formulafor the extinction efficiency from small particles,

Qsmal are derived in Ref. 2:

QMar.a - QBCG + Qabs [1W

with

Q.. = 16 bYr2 { +1 %12 II+2 (jIbI12 +I1%I2) and

= 8 brRW [2]

where

1 137•=3(Li + )' =3(Li + )[3

The optical constants transform is

2 = 7 C , and Uli= 1j [ ( 1)] , [4]
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where 01(z) is the first Ricatti-Bessel function and

7I = b•bIb + X(I - I/r 2)) prolates

- V/E b (ra2y oblates [5]

-2 = rE"b(1 + x 1 /3(1 - 1/ V)) prolates

-- au b r)X113 oblates 16]

where X ; v'3/1O and f • {(911m - 11 - 64)/155 I C _ S 1}.

The normalization factor is

+ r2 sin- 1  for prolates,

Vr-2 -- 1 r

=1+ -r2 1. + V ) for oblates. [71

The form factors are defined, for prolates as

-I ( ) +• i 1__ /l L g2) I 1
2 1-L + LII!+-)1 2g 8

g 2 L 2g 1 - g 2 r2

and for oblates,

L__ + ff2 1 tan-1 f -,1L' - v , - -2= ,-1  f2. 1 . [9]
f 2  fJ 2 ' 7

The above set of equations is identical to that found in Ref. 2 apart from the

exponent C in [4]. This exponent is introduced for the following reason. The exact solution

of the scattering problem can be expressed in terms of scattering coefficients (for spheres,
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these are the Mie coefficients). For small physical sizes the first scattering coefficient is

dominant and can be expanded as an infinite power series in the size parameter z. The

first term of this series is dominant only when Im - 11 is small. If we transform the optical

constants then the first scattering coefficient can still be expressed as an infinite series in x,

but this time the first term dominates only when Imr- 1I is large. For intermediate values of

m - 11, more terms of the power expansion of the scattering coefficients axe required. Since

the resulting expression would be cumbersome we have decided to modify the first term

of the transformed series in such a way as to model empirically the scattering behaviour

from small to large Jm - 1I. A simple and robust way to achieve this is to gradually turn

on the transform by using the exponent C. Thus when C = 0 the Rayleigh expression

results and when C = 1 the fully transformed expression results. Note that • = 0 when

Im - 11 _• 64/91 ; 0.7 and C = 1 when Im - 11 > 219/91 z 2.4.

2.2 Large Particle Term

In this section we discuss the extinction efficiency of large particles Qiare. We

sepaxate the physics into two parts, one which corresponds to the anomalous diffraction,

Qad, and the other, which can be considered due to edges effects, Qed.
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2.2.1 Extended Anomalous Diffraction

The anomalous diffraction formula is derived (Refs. 1 and 8) by assuming that the

incident plane wave is not significantly skewed in passing through the scattering object and

that, to first order, the effect of the scatterer is to locally delay the phase of the wave and

attenuate its amplitude (Ref. 3). The strict limit of validity of the formula is therefore

the region where (n - 1) << 1. The scattering object is in effect treated as an irregular

disc normal to the incident wave possessing a spatially dependent phase and amplitude.

The Fraunhofer pattern at infinity is then derived and Qezt evaluated from the standard

relations. For a spheroidal scatterer, this procedure leads immediately to the following

formula:

Q•d= Re{2 + 4e-W + 4 (e- -21) [10]

where w is given by

W- iAO, AO= 2(m - 1)rb [11]

P

and

p = Vfcos2 0 + r2 sin 2 0, a = 2ra/A, b = 2w#/A, m = n - ik. [12]

Where r = a/b is the aspect ratio (for prolates r > 1 and for oblates r < 1), a is the length

of the semi-axis of rotation, 0 is the other axis of the spheroid, 8 is the angle between the

incident radiation and the a or a axis, and A is the wavelength of the scattered radiation.

Hence a and b are the two size parameters associated with the spheroid, and p can be

considered a projection operator of the penumbral ellipse (the ellipse defined by the shadow
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line on the surface of the spheroid) onto the plane perpendicular to the direction of the

incoming radiation; When compared with exact results this formulation is satisfactory

for all oblate spheroids. For prolates, however, significant phase differences appear due to

deviation of the central ray.

To account for the refraction of the central ray, we have previously modified the

anomalous diffraction approximation (Ref. 1). The deviation of the central ray is now

taken into account when computing its phase difference.

The extended anomalous diffraction AO is found to be

W iAto = 1ip1r 'cos(k) +s sin(4O) M-CSO)
p2 .-COS2(4) + q2 sin 2(0) + 2s cos(4) sin(4) ] c

82 + p2A
cos(O) = M(p4 + 32)

,n(-p4 2)

sin(4) = m(p +2)M(p4 + 82)

a = [m2(p0 + s2) - 8211/2

a = p 2q2 -r 2

q = [r2 cos2 (0) + sin 2 (0)]1/2. [13]

In the limiting cases of r --+ oo AOb becomes:

A, = 2b{(m 2 - cos 2 0)1/2 - sin e}. (14]

For random orientations the angular averaging is carried out as follows:

4.d = f/ 2 Qdp sin 0 dO [151
g/f2 psin dO
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The integration in the numerator of [15] can be readily computed numerically if

the kernel is not too oscillatory. However, [15] can be analytically approximated by the

technique described in Ref. 9. This eliminates numerical difficulties and leads to a more

efficient algorithm. Following the procedure of Ref. 9, [15] becomes:

Qad = 2 + 4(11 -/2)/j(O) [16]

with

I, A - ( +_IF2(C) -(1 + 2 F()+(1 + 2 F()+ 2() [17]
11= I- ( c, C ZT C2 C2 C

and

j(0) +AA 1 1 2A [ Bw(ir/2) 18
" C(2-/2) )Z+ 'n L(B + j(O))w(O)J [18]

where

A = 7B[B+j(O)], B= w(O)-w(•'/4)
y + [w(ir/4) - w(7r12)]lj(r/4)'

/ - y B, w(7r/2) - w(O) [19]
j(0)

and

j(o) = - [g 2COS2(G)+ sfor prolates,

"r cos(0h/1 + p cos(0) 2 + ln(f cos(0) + V'l + f cos(0)2)] for oblates. [20]

Also,

E.(w(0) - C) E.(w(7r/2) - C)
F.(C) (w(M ) - C) - (,,,(,r/2) - C)-1, [211
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where E, is the nth order exponential integral (Ref. 5). And finally for prolates (considering

deviated rays),

w(O) = 2bi [(- )•-- -1 M

w('/4) = 2bi 2( m 2 - 1/2- /IV) +

w(r-2) = 2bi(m- 1),

I = 1= - r c- (I re [22]

for oblates (undeviated rays),

w(O) 2 2bri(m- 1),

w(7r/4) = 2bri(m-1) 1+r2'

w(wr2) = 2bi(m-1). [23]

As a consequence of the analytic integration technique, [13] is approximated by [221

at three values of 0 whereas [11] exactly reduces to [23] at the same three values. Note that

[16] can be shown to reduce to the anomalous diffraction formula of Van de Hulst for the

sphere.

2.2.2 Edge Effects

For a particle whose typical size is much larger than the wavelength, the edge

cannot be treated as sharp and the effect of the curvature of the object must be included.
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Jones (Ref. 4) has shown how to estimate these edge effects for three dimensional convex

bodies. In Ref. 1 we showed that

2Dr2/3

Qedge 2--/3 2F,(-2/3,1/2;1;(1 - 1/p2)) (prolates)
p2D/3

= 2Dr 2 /3  
_p- p2 2F,(-2/3,1/2;1;(1-p 2 )) (oblates), [24]

.999947 - 2.19081z + 1.51871z 2 - .325449z3
2 F1(-2/3,1/2; 1; z) • 1 - 1.85884z + .947705z 2 - .0847327z3  ' IzI 1,

D = Ce/b 2 1 3 . [25]

It can be shown for convex bodies, randomly oriented or illuminated by a randomly polarized

beam, that ce is a universal function of m. As Im - 11 --- 0, ce -+ Co = 0.996130 and as

Im - -1 oo, c, + c-* = 0.0659708 (Refs. 1, 11 and 12). This universal function is

not known and therefore must be modelled. Since ce is independent of shape, this can be

accomplished by studying the sphere alone. An added complication to D arises, however,

when we consider spheroids with small phases, i.e. A0 << 1. This occurs since what

we have been calling an edge effect is in fact the field distortion around the boundaries

of the particle, and hence its behaviour for small A0 is quite different than for large A0.

As before, we have modelled this effect in our expression for D by using the sphere. Our

empirical model of the above two behaviours is:

Co

[b211/ 3 + llim- -10]1/p

4/25 +2 I co+ - coo lint 1.95 or ImI >2.05
S- 9+58T1m25+ <2.05 [2 61m_2.1

=20, 1.95 < Iml < 2.05 [26]
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In the above, the special case for f with m • 2 is to avoid the obvious singularity in the

main expression. At this point we require only a relatively large value for /.

The large particle limit for the spheroid becomes

Qet - 2 + Qe.dge. [27]

We now wish to produce a term T which, when it multiplies [10], gives the same limit as

[27] without diverging as the size parameter goes to zero. We have found that (Ref. 1) an

adequate expression for our purposes is:

T = 2 - e-Qedge/2 [28]

For random orientations the angular averaging is carried as in [15] but with T replacing

Q.d:

° Tp sin 0 dO [29]
fg2 psinOdO

Using the same integration technique to obtain an analytic approximation to [29]

we obtain:

72 2 - e-SC'A'PF/j'(O) [30]

where

A' = 7'B'[B' + j'(0)], B'1 I - v(r4)
7' + [v(7r/4) - ,(7/2)]/j'(Tr/4)'

C'= -'B, ' v(7r/2) -12/
== I-y'B, y' /(O) -1 6 = Dr2 3. [31]

and

F' -2(6) E2(6v(r/2))
26([/2)32]
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Here E2, is the 2nd order exponential integral. For prolates,

A'(9) = ri(o),

2 ,;1;(r2 - 1)/(r 2 + 1)][2/(r2 + 1)]3

2 1

v(r/2) = 2 F1[- , ;1; 1 - 1/r2]/r2/3 [33]

and for oblates,

A'o) = -M~),

F 2 12
v(r/4) = 2 F& -3; 1;1 -r 2/2]/r

v(wr/2) = 2FI[-2, ; 1; 1- r 2 ]/r 2  [34]

2.2.3 Total Contribution to Qlarge

The total contribution to Qiavge for a given orientation is (Ref. 1):

Qilae QadT. [35]

. or random orientation the angle averaging would give:

ýzarqe = f1 2 QadTpsin 0 dO [36]
f/ p Sin [dO

Due to their complementary nature, Qad se 2 = constant for large IwI while T • constant

for small to medium Iwi. Therefore, to a good approximation, we can separate the kernel

of the above integral to obtain:

,qlage = (,dT. [37]
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An extensive comparison between [37] and the numerical computation of • from [36]

provides definitive evidence for the above argument. Some examples of this are shown in

the next chapter.

2.3 Bridging Function

is a good approximation to ;ezt when the semi-major axis is less than 1.

For larger values of the semi-major axis it overestimates ;q. Similarly, QiB?9e is a good

approximation to ;Ut when the semi-major axis is greater than 2 - 5 depending on Im - 11.

For smaller values of the semi-major axis it overestimates •e•- To obtain ;Ut in the

transition region from •Iarge and , we need a bridging function that smoothly goes

between the two. The form must have iamau as the first term in its series expansion and

asymptotically go to •qarge"

A quite general form that can do this is the confluent hypergeometric function or

Kummer function which has the general form 1Fl[a; b, czv'j, where a, b,c, z, are arbitrary

parameters and z is tup,- variable (Ref. 5). From the basic properties of this function

im r(b -a) c az , [a; b,- z r(b-a) C ,,a caz' + ba(a-+-1)z 2,',
z..o rb b)b 2! b(b + 1)

Sr(b-a) a ••a(l+a-b)
im ra b-Fa) c z 1Fl[a;b,-cz"] -* 1 + -+ ... [38]

With the small and large particle limits considered the bridging function B becomes:

B = Q,--nr'F[1/L/;v;-(cz)'J with
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C - r(b)/r(b - 1/&l), and Z = sma/•,/ýorge [39]

which has the correct limits, i.e.

lim B --

im B - Olarge [401

We now need to determine P and b. We should expect these parameters to be insensitive to

aspect ratio since most of the shape effects are already accounted for by Omal and Olare"

We have confirmed this supposition by numerical evidence. Assuming these parameters are

shape independent, we can, for each of an array of m values, find the 'best' set of values

of v and b by considering the sphere only. We did this by using a nonlinear fitting routine.

The results of this fit, for the vast majority of cases made b very large (> 10). When b

becomes very large, B goes confluent (see Ref. 13 for more details). This means that the

function simplifies dramatically to a binomial function, thus:

lim B --+ 0mall [411

b-.oo [1 + ZU]'I"

This can be rearranged in a form similar to a generalized mean as:

1 _ 1 1 [2
"- I- --. I1- [42]

-= mall +

We must now model the values for -y. We have modelled this parameter in previous papers

(Refs. I and 14). This previous modelling is not useful to the current approach since OMa/

and i1arge have changed, the formula for ie, has been extended to all n >_ I and angle

averaging has been carried out.
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In [42] if one of either i or •znrge is much smaller than the other then, to a

good approximation, i.t is this value provided that -y > 0. Larger values of - will drive

iezt to the smallest value between dU and iroe more than smaller values. When the

physical size of the particle is small, t is equal to or less than , and hence -y should

be large. Conversely, when the physical size of the particle is large, .mal is much larger

than Ol.... and we then merely require that - be positive. The real difficulty in modelling

- is thus in the intermediate ranges of physical sizes. Most of the behaviour of 7 in the large

particle regime can be determined by considering first the real axis, in the refractive index

plane, and then by varying the imaginary component. Considering first the real axis, the

behaviour can be described by the sum of two asymptotic terms, one as n - 1 --. 0 and the

other as n -• oo. The behaviour of 7 as k increases is well modelled by a single term. The

sum of these terms we will call 71. As the physical size of the particle changes from small

to large, - must go smoothly from some large value to 71. This transition is most sensitive,

and hence best modelled, where the Rayleigh scattering and absorption are roughly equal.

This occurs since the Rayleigh absorption term and the anomalous diffraction absorption

term are dose to or may be equal while the scattering terms are usually quite different.

This can play significantly on the balance between ,,a and •1avge as the physical size

varies. This has been taken into account by an additional term dependent on the physical

size. This size is represented by the spherical volume equivalent radius of the spheroid.
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From an empirical fit on the above terms, -y becomes:

(54-11) 5 3kc (n2 - 1)2
7 = 7+1 + (a0/3b)41 2 +kc+k= 66n

I (+ n - 1)+4 4n 1111' + 16U2 U= [ [43]
S= - 1)1/3 + 1]3 %f4 +2 [2(n - 1)]2

We have verified that none of the above modelling of y changes the empirical fact that B

goes confluent in the best fit and hence [42] still remains valid. It should also be pointed

out that the bridging function is not necessary if 4,. is only required outside the transition

region. In this case ie% =, or et = •ire, depending on the region of interest.

3.0 RESULTS

The complete formula, as presented in the previous chapter, gives correct asymptotic

behaviour for both large and small Irm-II and b. Thus, in studying the error behavior of the

approximation, the mid-ranges of Im - 11 and b are of greatest interest. In this chapter we

will compare the analytic approximation with the exact T-matrix method as implemented

by Barber (Ref. 6) or, for efficiency, the Mie theory when r = 1.

Figures 1 and 2 show the comparison of Q,_t versus b for aspects 2 and 1/2, re-

spectively. The refractive index is n = 1.3, close to that of water. It is clear that the error

decreases at either extreme of b. (The deviation seen in Fig. 1 for b > 23 is caused by ill

conditioning in the T-matrix code). The largest errors are near and around the first two

peaks. This occurs since much more of the scattering physics must be considered.
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FIGURE 1 - Comparison between approximation and T-matrix method for an in-
dex of 1.3 and an aspect ratio of 2
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FIGURE 2 - Comparison between approximation and T-matrix method for an in-
dex of 1.3 and an aspect ratio of 1/2
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Figures 3 and 4 are contour graphs of the percent error between the analytic ap-

proximation and the T-matrix computation. The refractive index varies as I < n < 3 and

10' < k < 10. Figure 3 is for a sphere and Fig. 4 is for a prolate spheroid of aspect 2.

There are three features of note. One is the increase of the error for small k and large n.

This error is shown well in Fig. 5 for the case of a sphere and index m = 1.8 - 0 i. This

feature is simply due to resonant surface waves that are not modelled. Note that for aspect

2, these errors axe significantly smaller since the surface waves are damped by the aspheric-

ity. The remaining errors arise from inaccurate modelling of the bridging region - that is

between the Rayleigh region and the first peak. The second feature occurs approximately

when 2 < k < 10. Here, for large particles, the coherence effect of the internal refracted

wave is significant and hence has not been properly modelled (Ref. 15). This is shown in

Fig. 6 for an oblate particle with an aspect ratio of 1/2 and m = 1 - 3i. This becomes

insignificant for larger k since the particle becomes reflective. The remaining error at these

large values of k and b - 1 is again due to difficulties in the bridging function attempting

to model the electromagnetic field on the surface. The third significant feature occuka when

the Rayleigh scattering and absorption are roughly equal. This occurs since the Rayleigh

absorption term and the anomalous diffraction absorption term are close to or may be equal

while the scattering terms are usually quite different. This was included in the modelling

of -y in the previous chapter by kc, [43]. Residual errors can still be seen in Figs. 3 and 4

due to imperfect modelling. These errors follow curves with k o (n 2 - 1)2/n.
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FIGURE 5 - Comparison between approximation and Mie theory for an index of
1.8 and an aspect ratio of 1; significant surface waves.
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FIGURE 6 - Comparison between approximation and T-matrix method for an in-
dex of 1 - 3i and an aspect ratio of 1/2; significant internal wave
coherence effect.
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FIGURE 7 - Comparison between approximation and T-matrix method for an in-
dex of 3 - Oi and an aspect ratio of 2; incipient MDR at b s I
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FIGURE 8 - As Fig. 7 but T-matrix results low pass filtered for b > 1
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For large n, body resonances can occur. These are sometimes called moiphology

dependent resonances (MDR). For spheres these occur near nx = lr, where I is a natural

number. Figure 7 shows an example of an incipient MDR on the first diffraction peak of

Qeit. Here, m = 3 - Oi and r = 2. Note that, despite the significant perturbation in

the transition region due to the MDR, the approximation is excellent. Only the first, and

hence simplest MDRs are modelled (by i1, [5] and 72, [6]). To show the accuracy of the

approximation, the T-matrix was low pass filtered for b > 1 and is graphed in Fig. 8. Since

by far the main contribution is now from the diffraction peaks, the underlying accuracy of

the approximation is apparent.

The next example is a model of extinction by randomly oriented copper flakes in

the infrared (m = 35 - 35 i). An oblate spheroid with an aspect rntio of 0.333 was used. For

this index, lower aspect ratios could not be considered since the T-matrix will not produce

usable results and hence no comparison could be made. Qzt for this case is shown in Fig.

9. Caution is required since the T-matrix for b > .25 begins to decrease rapidly and will

go negative for larger b. This shows an advantage of the approximation. It can estimate

Qe.t for combinations of n, k, b and r when the T-matrix cannot. Figures 10 and 11 axe

examples of Qezt for water prolate and oblates spheroids at 9.4 GHz, respectively. Both are

difficult cases since the T-matrix is almost ill conditioned and several MDRs are becoming

apparent. In Fig. 10, the first MDR is reasonably well modelled while the second is not.

However, the latter only introduces an error of about 20 %. Again Fig. 11, the first MDR

is well modelled and the second is not. In contrast to Fig. 10 it introduces a smaller error
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0.10

"m=35-35i, r= 1/3

0.08

0.06

0.04

0.02 T Matrix
------ Approximation

0.00 .......
0.00 0.05 0.10 0. 15 0.20 0.25 0.30

Semi-Axis b

FIGURE 9 - Comparison between approximation and T-matrix method for an in-
dex of 35 - 35i and an aspect ratio of 1/3

since it is coincident with the first diffraction peak. Note that at the highest b shown the

T-matrix has become ill conditioned.

Extensive computations have been carried out to indicate the error of the approx-

imation over the complete range of stability of the T-matrix method. Both the error and

location of the error as a function of refractive index m and aspect ratio r are given in the

Appendix.

All our approximate Q,,t diagrams in this chapter and the appendix were produced

at a rate of greater than 104 times faster than by the T-matrix code. Since the T-matrix

scales as at least the cube of the optical size whereas the analytic approximation is optical

size independent, larger size parameters or larger refractive indices lead to larger speed-up
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FIGURE 10 - Comparison between approximation and T-matrix method for an in-
dex of 8.075 - 1.824 i and an aspect ratio of 2; water at 9.4 GHz.
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FIGURE 11 - Comparison between approximation and T-matrix method for an in-
dex of 8.075 - 1.824i and an aspect ratio of 1/2; water at 9.4 GHz.



UNCLASSIFIED
25

factors. For example, letting m = 1.5 and r = 2, the following execution times on an Intel

i860 40 MHz coprocessor are found: 0.25 s, b = 1, 4.07 s, b = 10 and 2290 s, b = 75. Other

values of m or r are likely to increase the time. The computation time of the approximation

is nearly independent of optical size and aspect ratio and, for the same coprocessor, the

execution time is .0029 s. The savings in time is obvious for large b and is still significant

for smaller b if many values of Qet are required.

4.0 CONCLUSIONS AND LIMITATIONS

We have presented an approximation to Qet for randomly oriented spheroids which

gives good results with little loss in accuracy for all size parameters, aspect ratios and

refractive indices n > 1 and k > 0 and p = 1. If high precision is not required, the formula

is far more economical in computer time than the T-matrix method for obtaining Qext.

When both the range of demonstrated validity and the accuracy are taken into account,

this formula is superior to all other approximations known by the authors.

Extensive computations have been carried out to indicate the error of the approx-

imation over the complete range of stability of the T-matrix method. Both the error and

location of the error as a function of refractive index m and aspect ratio r are given in the

appendix.

Several limitations of the previous numerical approach (Ref. 1) have been removed.

The remaining limitations, that for n < I and/or k < 0, are not modelled since new and
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significant physical phenomena arise (e.g. total internal reflections and optical gain). Even

n modestly less than I can cause problems. Another limitation occurs for 2 < k < 10

and large particles. In this region, the absorption is not well modelled. If this effect was

properly accounted for, Qab. and hence Qa.a could be globally and readily obtained by using

the same approach.
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APPENDIX A

Survey of Maximum Relative Error and its Location

An extensive computation of Q. for 1 < n < 2, 10-5 < k < 10, 1/5 5 r < 5 and

1/10 < rb <30 was performed using the T-matrix and the analytic approximation. When

r = 1 a Mie code was used instead. From this calculation the maximum relative error can

be deduced. In cases were the error may occur outside the above limits (such as values of m

near 1), but still inside the stable region of the T-matrix, the calculation was extended to

cover this region. In addition, the value of b were this maximum occured was also recorded.

The sequence of following diagrams gives the results of this computation. The

upper diagram is the maximum relative error in percent and the lower diagram is the

location of the maximum. Care was taken to insure that the T-matrix was stable. This is

done by verifying the convergence of the T-matrix itself where possible, by comparing the

backscatter efficiency with the Fresnel coefficient estimate, and with the Rayleigh formula.

Since it is difficult estimate the accuracy near the limit of stability of the T-matrix code

some additional error due to the T-matrix code could be present.
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Max Rel Error, Analytic vs T-Mat, r= 1/3
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